nodchipのコンピューター将棋ブログ

コンピューター将棋ソフト「tanuki-」シリーズの実験結果を掲載しています。

tanuki- 2022-06-12 nnue-pytorch scaling

tanuki- 2022-06-11 nnue-pytorch max_epoch

実験内容

  • nnue-pytorch を用いた学習で、 scaling (kPonanzaConstant) の設定がレーティングに与える影響を調べる。

棋譜生成

生成ルーチン tanuki-棋譜生成ルーチン
評価関数 水匠5 FV_SCALE=16
1手あたりの思考 深さ最大 9 思考ノード数最大 50,000 ノード
開始局面 foodgate の 2020 年~ 2021 年の棋譜のうち、レーティング 3900 以上同士の対局の 32 手目までから 1 局面ランダムに選択し、その局面を開始局面とした ランダムムーブなし
生成局面数 10 億局面 × 8 セット
生成条件 対局は打ち切らず詰みの局面まで学習データに出力した

シャッフル条件

生成ルーチン tanuki-シャッフルルーチン
qsearch() あり
置換表 無効

機械学習

機械学習ルーチン nnue-pytorch + やねうら王 https://github.com/nodchip/nnue-pytorch/tree/shogi.2022-05-23
学習モデル halfkp_256x2-32-32
学習手法 SGD ミニバッチ法 Ranger
batch-size 16384
threads 2
num-workers 2
gpus 1
features HalfKP
max_epoch 300
scaling (kPonanzaConstant) 600
勝敗項の教師信号 1.0

レーティング測定

対局相手 tanuki- 2022-04-01 halfkp_256x2-32-32 再実験 https://docs.google.com/document/d/1U2dtYgksApn9GYIUJEUtceE0Yc-0dfmx6kA44FopDXc/edit
思考時間 持ち時間 300 秒 + 1 手 2 秒加算
対局数 5000
同時対局数 64
ハッシュサイズ 768
開始局面 たややん互換局面集

実験結果

機械学習

レーティング測定

対局数=5000 同時対局数=64 ハッシュサイズ=768 開始手数=24 最大手数=320 開始局面ファイル=C:\Jenkins\workspace\TanukiColiseum.2022-05-02\TanukiColiseum\taya36_2020-11-06.sfen NUMAノード数=2 表示更新間隔(ms)=3600000

思考エンジン1 name=YaneuraOu NNUE 7.10 64ZEN2 TOURNAMENT author=by yaneurao exeファイル=C:\Jenkins\workspace\TanukiColiseum.2022-05-02\engine1\source\YaneuraOu-by-gcc.exe 評価関数フォルダパス=D:\hnoda\shogi\eval\tanuki-.nnue-pytorch-2022-06-11 定跡手数=256 定跡ファイル名=no_book 思考ノード数=0 思考ノード数に加える乱数(%)=0 思考ノード数の乱数を1手毎に変化させる=False 持ち時間(ms)=300000 秒読み時間(ms)=0 加算時間(ms)=2000 乱数付き思考時間(ms)=0 スレッド数=1 BookEvalDiff=30 定跡の採択率を考慮する=false 定跡の手数を無視する=false SlowMover=100 DrawValue=-2 BookEvalBlackLimit=0 BookEvalWhiteLimit=-140 FVScale1=16

思考エンジン2 name=YaneuraOu NNUE 7.10 64ZEN2 TOURNAMENT author=by yaneurao exeファイル=C:\Jenkins\workspace\TanukiColiseum.2022-05-02\engine2\source\YaneuraOu-by-gcc.exe 評価関数フォルダパス=D:\hnoda\shogi\eval\suisho5.halfkp_256x2-32-32.80G\final 定跡手数=256 定跡ファイル名=no_book 思考ノード数=0 思考ノード数に加える乱数(%)=0 思考ノード数の乱数を1手毎に変化させる=False 持ち時間(ms)=300000 秒読み時間(ms)=0 加算時間(ms)=2000 乱数付き思考時間(ms)=0 スレッド数=1 BookEvalDiff=30 定跡の採択率を考慮する=false 定跡の手数を無視する=false SlowMover=100 DrawValue=-2 BookEvalBlackLimit=0 BookEvalWhiteLimit=-140 FVScale2=16

対局数5000 先手勝ち2283(51.7%) 後手勝ち2137(48.3%) 引き分け580

engine1

勝ち1490(33.7% R-103.0 +-10.1) 先手勝ち784(17.7%) 後手勝ち706(16.0%)

宣言勝ち25 先手宣言勝ち13 後手宣言勝ち12 先手引き分け285 後手引き分け295

engine2

勝ち2930(66.3%) 先手勝ち1499(33.9%) 後手勝ち1431(32.4%)

宣言勝ち93 先手宣言勝ち45 後手宣言勝ち48 先手引き分け295 後手引き分け285

1490,580,2930

まとめ

nnue-pytorch を用いた学習で、 scaling (kPonanzaConstant) の設定がレーティングに与える影響を調べた。

学習ロスと検証ロスは、 scaling=361 の場合と比べて下がった。

レーティングは、比較対象と比べて R-103 ほど低かった。

学習ロスと検証ロスについては、定数を変更したことにより、出力がより教師データに近づいたのだと思われる。

レーティングについては、学習ロスと検証ロスが下がったからといって、必ずしもレーティングが上がるわけではないという事を表している。

今後は、元の値である scaling=361 で実験を進めていきたい。